964 resultados para Epitopes, T-Lymphocyte


Relevância:

70.00% 70.00%

Publicador:

Resumo:

HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Bahia grass pollen (BaGP) is a major cause of allergic rhinitis. Subcutaneous allergen-specific immunotherapy is effective for grass pollen allergy, but is unsuitable for patients with moderate to severe asthma due to the risk of anaphylaxis. T cell-reactive but IgE nonreactive peptides provide a safer treatment option. This study aimed to identify and characterize dominant CD4+ T cell epitope peptides of the major BaGP allergen, Pas n 1. Methods Pas n 1-specific T cell lines generated from the peripheral blood of BaGP-allergic subjects were tested for proliferative and cytokine response to overlapping 20-mer Pas n 1 peptides. Cross-reactivity to homologous peptides from Lol p 1 and Cyn d 1 of Ryegrass and Bermuda grass pollen, respectively, was assessed using Pas n 1 peptide-specific T cell clones. MHC class II restriction of Pas n 1 peptide T cell recognition was determined by HLA blocking assays and peptide IgE reactivity tested by dot blotting. Results Three Pas n 1 peptides showed dominant T cell reactivity; 15 of 18 (83%) patients responded to one or more of these peptides. T cell clones specific for dominant Pas n 1 peptides showed evidence of species-specific T cell reactivity as well as cross-reactivity with other group 1 grass pollen allergens. The dominant Pas n 1 T cell epitope peptides showed HLA binding diversity and were non-IgE reactive. Conclusions The immunodominant T cell-reactive Pas n 1 peptides are candidates for safe immunotherapy for individuals, including those with asthma, who are allergic to Bahia and possibly other grass pollens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate the molecular basis of human IgE-allergen interaction by screening a phage-displayed peptide library with an allergen-specific human IgE-mimicking monoclonal antibody (mAb). A mAb that reacted with major grass pollen allergens was successfully identified and shown to inhibit human IgE-allergen interaction. Biopanning of a phage-displayed random peptide library with this mAb yielded a 12 amino acid long mimotope. A synthetic peptide based on this 12-mer mimotope inhibited mAb and human IgE binding to grass pollen extracts. Our results indicate that such synthetic peptide mimotopes of allergens have potential as novel therapeutic agents. © 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Consensus HIV-1 genes can decrease the genetic distances between candidate immunogens and field virus strains. To ensure the functionality and optimal presentation of immunologic epitopes, we generated two group-M consensus env genes that contain variable regions either from a wild-type B/C recombinant virus isolate (CON6) or minimal consensus elements (CON-S) in the V1, V2, V4, and V5 regions. C57BL/6 and BALB/c mice were primed twice with CON6, CON-S, and subtype control (92UG37_A and HXB2/Bal_B) DNA and boosted with recombinant vaccinia virus (rVV). Mean antibody titers against 92UG37_A, 89.6_B, 96ZM651_C, CON6, and CON-S Env protein were determined. Both CON6 and CON-S induced higher mean antibody titers against several of the proteins, as compared with the subtype controls. However, no significant differences were found in mean antibody titers in animals immunized with CON6 or CON-S. Cellular immune responses were measured by using five complete Env overlapping peptide sets: subtype A (92UG37_A), subtype B (MN_B, 89.6_B and SF162_B), and subtype C (Chn19_C). The intensity of the induced cellular responses was measured by using pooled Env peptides; T-cell epitopes were identified by using matrix peptide pools and individual peptides. No significant differences in T-cell immune-response intensities were noted between CON6 and CON-S immunized BALB/c and C57BL/6 mice. In BALB/c mice, 10 and eight nonoverlapping T-cell epitopes were identified in CON6 and CON-S, whereas eight epitopes were identified in 92UG37_A and HXB2/BAL_B. In C57BL/6 mice, nine and six nonoverlapping T-cell epitopes were identified after immunization with CON6 and CON-S, respectively, whereas only four and three were identified in 92UG37_A and HXB2/BAL_B, respectively. When combined together from both mouse strains, 18 epitopes were identified. The group M artificial consensus env genes, CON6 and CON-S, were equally immunogenic in breadth and intensity for inducing humoral and cellular immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. METHODS: We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). RESULTS: The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. CONCLUSIONS: These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neonatal immaturity of the immune system is currently believed to generally limit the induction of immune responses to vaccine Ags and to skew them toward type 2 responses. We demonstrated here that Bordetella pertussis infection in very young infants (median, 2 mo old) as well as the first administration of whole-cell pertussis vaccine induces B. pertussis Ag-specific IFN-gamma secretion by the PBMC of these infants. IFN-gamma was secreted by both CD4(+) and CD8(+) T lymphocytes, and the levels of Ag-induced IFN-gamma secretion did not correlate with the age of the infants. Appearance of the specific Th-1 cell-mediated immunity was accompanied by a general shift of the cytokine secretion profile of these infants toward a stronger Th1 profile, as evidenced by the response to a polyclonal stimulation. We conclude that the immune system of 2-mo-old infants is developmentally mature enough to develop Th1 responses in vivo upon infection by B. pertussis or vaccination with whole-cell pertussis vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vaccines harboring genes that encode functional oncoproteins are intrinsically hazardous, as their application may lead to introduction of these genes into normal cells and thereby to tumorigenesis. On the other hand, oncoproteins are especially attractive targets for immunotherapy of cancer, as their expression is generally required for tumor growth, making the arisal of tumor variants lacking these antigens unlikely. Using murine tumor models, we investigated the efficacy of polyepitope recombinant adenovirus (rAd) vaccines, which encode only the immunogenic T cell epitopes derived from several oncogenes, for the induction of protective anti-tumor immunity. We chose to employ rAd, as these are safe vectors that do not induce the side effects associated with, for example, vaccinia virus vaccines. A single polyepitope rAd was shown to give rise to presentation of both H-2 and human leukocyte antigen-restricted cytotoxic T lymphocyte (CTL) epitopes. Moreover, vaccination with a rAd encoding H-2-restricted CTL epitopes, derived from human adenovirus type 5 early region 1 and human papilloma virus type 16-induced tumors, elicited strong tumor-reactive CTL and protected the vaccinated animals against an otherwise lethal challenge with either of these tumors. The protection induced was superior compared with that obtained by vaccination with irradiated tumor cells. Thus, vaccination with polyepitope rAd is a powerful approach for the induction of protective anti-tumor immunity that allows simultaneous immunization against multiple tumor-associated T cell epitopes, restricted by various major histocompatibility complex haplotypes.